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Conservative Multiblock Navier—Stokes Solver for
Arbitrarily Deforming Geometries

Jaakko Hoffren,* Timo Siikonen,i and Seppo Lainef
Helsinki University of Technology, 02150 Espoo, Finland

A new finite volume based thin-layer Navier~Stokes solver for time-dependent compressible flows is described.
The implicit, temporally and spatially second-order accurate formulation facilitates the simulation of flows at
high Reynolds numbers. Complex, arbitrarily deforming geometries can be handled using fully conservative
multiblock structured grids. An iterative time-stepping utilizing a multigrid technique maintains the temporal
and spatial accuracy of the basic scheme also at grid block interfaces and solid boundaries. Several test cases
have been computed to verify the proper function of the developed code, and the simulations of a transonic
buffet and an oscillating supercritical airfoil are presented here. The solver employing the three-level fully
implicit time discretization scheme is found to work well in dynamic grids within the limitations of the original
formulation. The new code has the desired capabilities, although there is room for improvement in computational

efficiency.
Nomenclature
C, = pressure coefficient
C,1m = imaginary part of scaled unsteady pressure
coefficient, 2 [T cos(wt)C,(¢) dt/(a,T)
C,r. = real part of scaled unsteady pressure coefficient,

2 [T sin(wt)C,(t) dt/(a,T)

airfoil chord

drag and lift coefficients

total energy per unit volume

flux vector in a curvilinear grid

reduced frequency, wc/(2U..)

Mach number

Cartesian unit normal components of a cell face

pressure

residual

Reynolds number

cell face area

cycle period

time

vector of conservative variables

freestream velocity

convective velocity component

Cartesian velocity components

= Cartesian velocity components of the grid

normal velocity component of the flow

cell volume

normal velocity component of the grid

spatial coordinates

= instantaneous angle of attack, & + «, sin(wt)

= average angle of attack

angle-of-attack oscillation amplitude

parameter defining the implicitness of the

temporal discretization

parameter controlling the time levels in the

temporal discretization

At = physical time step, nondimensionalized by the
freestream sonic speed and the airfoil chord

AV = volume swept by a cell face during a time step
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Az = local pseudo-time-step

olU = change in conservative variables in an iteration
cycle or a pseudo-time-step

p = density

[ = angular velocity

Subscripts

L = spatial indices

k = summing index

mod = modified expression

v = viscous

1,2 = cell face endpoints

Superscripts

= intermediate solution between n and n + 1

n = time level with the latest known solution
n + 1 = new time level with the unknown solution
n — 1 = time level one step before n

Introduction

IME-ACCURATE flow simulations using the Euler or
the Navier—Stokes equations have been conducted as
long as the basic numerical methods and sufficiently powerful
computers have been available. Fairly sophisticated cases had
been studied already during the early development stage of
the numerical flow solvers. Emery' published transient Euler
calculations in a shock channel. Oscillating geometries were
involved in the simulation of a pitching airfoil by Magnus and
Yoshihara? and in the aileron buzz study of Steger and Bailey.?
Other classic examples are the calculations of transonic shock-
boundary-layer interactions on a biconvex airfoil by Levy*
and Steger.®
Owing to their relative simplicity, explicit time-integration
methods have been popular from the early days of numerical
flow simulations. The Lax—Wendroff scheme was used in Ref.
2 and the explicit MacCormack scheme was applied in Ref.
4. The latter scheme was employed also in the inlet calcula-
tions of Newsome® and in the study of an axisymmetric com-
bustor by Scott and Hankey.” The Adams—Bashfort scheme®
has gained some favor too, but different versions of the
Runge—Kutta scheme have become the most popular explicit
time-integration methods. Runge—Kutta schemes for oscil-
lating inviscid flows have been applied, e.g., in the airfoil
calculations of Smith et al.'* and Jameson and Venkatakrish-
nan,''2 and in the study of counter-rotating cascades by Engel
et al.’®
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The Runge—Kutta methods are second-order accurate in
time, easy to code, and straightforward to vectorize, but they
suffer from the serious time-step stability limitations, as do
all of the explicit schemes. This deficiency makes them poorly
suited to simulations of viscous flow at high Reynolds numbers
requiring very dense grids. The time-step limitation can be
avoided by using implicit schemes that have been applied
parallel to the explicit schemes as long as the numerical flow
simulation has been feasible.

By far, the most popular implicit time-integration method
has been the first-order accurate backward-Euler scheme,
usually combined with an approximate factorization to facil-
itate the solution at each time step. This method was applied
in Refs. 3 and 5, and it has been utilized in numerous other
viscous and inviscid simulations of oscillating airfoils and
wings!*-2* or other types of unsteady flow cases.>~3° The
method is robust, relatively efficient, and appears to be ac-
curate enough for slowly varying situations.

Second-order accurate implicit schemes have found some
applications. The three-level fully implicit scheme has been
utilized in the simulation of dynamic stall by Visbal®' and
Shida et al.*? The same method has been applied by Simpson™
and Belk,* who report an improvement in accuracy compared
with the first-order scheme. Thomadakis and Tsangaris® have
come to similar conclusions in their studies of an oscillating
airfoil. Some attempts with using the trapezoidal rule or the
Crank—Nicolson (C—N) scheme have also been published -
but there have been stability problems.

The approximate factorization frequently applied with the
implicit formulations produces additional errors into the so-
lution. A proper implicit treatment of boundary conditions
causes difficulties, too. Especially problematic are the block
interfaces in multiblock grids. To circumvent these difficulties
and to allow for enlarged physical time steps while retaining
the accuracy of the basic discretization, iterative solution
methods may be employed. Several different iteration schemes
have been studied. Simpson* and Steithorsson et al.?” have
coupled a Newton-type iteration with a pseudotime integra-
tion within physical time steps. A similar method has been
used by Rogers and Kwak?® for solving incompressible flows
applying the pseudocompressibility concept during iterations.
Ridder et al.,?® Brenneis and Eberle,* Batina,* and Chen et
al.*! have implemented variants of Gauss—Seidel iterations.
Relaxation schemes for incompressible flows have been pur-
sued by Hegna**** and Tuncer et al.** Recently, the gener-
alized minimal residual (GMRES) method studied, e.g., by
Sankar and Hixon* has been arousing interest.

The longer time steps of the iterative methods combined
with a higher-order basic temporal discretization offer a pos-
sibility to improve the efficiency of the computations com-
‘pared with low-order factored schemes. If an iteration could
be made to converge faster than it takes to perform several
short steps of the direct solution, savings would be achieved.
However, few studies addressing the convergence accelera-
tion within physical time steps have been published. The mul-
tigrid technique, highly successful in steady-state calculations,
has been tested,*~#* but the results are inconclusive.

Unsteady flows often involve moving or deforming bodies.
A variety of methods has been devised to take the body dy-
namics into account. Magnus and Yoshihara' as well as Ruo
and Sankar'® have circumvented the problem of an unsteady
grid by specifying time-dependent transpiration velocities
to simulate airfoil oscillations. Rigid airfoil oscillations have
been studied with a rigidly moving grid*® and with a deform-
ing grid.*" A rigidly moving grid does not cause any practi-
cal computational problems, but grid deformations may be
difficult to calculate efficiently. Different interpolation or
stretching methods may be used, or the grid can be regen-
erated at each time step. The grids used in the time-dependent
simulations are generally structured, although Batina and
coworkers*->'-¢ have pioneered the use of unstructured grids

with dynamic bodies. An advantage of this approach is that
complex geometries and large deformations are easier to han-
dle than with structured grids. On the other hand, the concept
is poorly suited to high-Reynolds-number viscous flows, which
limits its applicability.

The conservation form of the flow equations has been found
preferable in numerical simulations. However, the geomet-
rical conservation law has often been neglected. This rela-
tionship connects the grid cell face velocities and volume changes
in such a way that the grid deformations do not bring any
additional numerical errors into the solution. The early cal-
culations were invariably performed without concern about
the geometrical conservation law, but later its importance has
been addressed in a few theoretical papers®’~*” and documents
including test calculations.™-*'%> However, Guruswamy®’ and
Obayashi et al.®! claim that in practical calculations with small
deformations, it is not necessary to respect the geometrical
conservation in order to get accurate results. Although the
issue is somewhat controversial, it can be assumed that the
geometrical conservation law is an important factor in cases
involving large deformations.

Based on the survey of the available literature, it appears
that most of the published time-accurate flow solvers are
somewhat restricted in applicability, or their efficiency has
not been addressed. The time integration itself may be ap-
proximate and inaccurate, the geometry to be studied may
have to be simple, or the treatment of the grid deformations
is not well defined. Computer power has apparently limited
the development work. However, recent advances in com-
puter technology have alleviated the problem significantly,
and at present it seems reasonable to direct the effort towards
the development of more general and accurate simulation
methods for time-dependent flows.

In this article, a new time-accurate flow simulation method
based on the iterative solution of the thin-layer Navier—Stokes
equations is studied. The aim of the work is to produce a
general, accurate, and efficient time-integration code for the
time-dependent flow equations in arbitrarily deforming, com-
plex computing domains. The flow solver developed from a
steady-state code® is described in the following chapter, and
some test cases used to verify the correct operation of the
system are presented subsequently. Also, a search for an op-
timal code operation mode is discussed. At the end of this
article, the results of the work are evaluated and some con-
clusions are drawn.

Description of the Numerical Method

Finite Volume Formulation in a Deforming Grid

In the finite volume method applied, the conservation laws
for mass, momentum, and energy in a compressible flow are
written directly for each deformable, discrete computational
cell as follows:

d n
dr VU + 2 FU) 8 =0 1)
&=t

Here, S, are the vectorial cell surface segment areas. In two
dimensions, U and F(U)-S = FS for each cell face can be
written as

P _PL2

U=|M ps=|PUTMPlsps (2
pv pviu + n,p
e eid + u,p

Here, u and v are defined in a fixed frame of reference. For
brevity, the viscous fluxes represented by ¥, are not written
explicitly here, since their basic forms are not changed by the
grid deformation. In the given fluxes, n, and n, are the unit
normal components of S, p is the pressure obtained from the
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equation of state for a perfect gas, u, the velocity component
normal to the cell face, and @ = u, — v,, the relative flow
velocity through the face. The only additional term due to
grid dynamics as compared with a fixed geometry is the grid
normal velocity v,,.

For the following discussion, a shortened form

d
G VU=R 3)

for the flow equations is adopted, applying the abbreviation
R = -2p, Fk(Uk)'Sk~

Temporal Discretization

In order to be able to simulate high-Reynolds-number vis-
cous flows with reasonable calculation times, an implicit for-
mulation is necessary. Second-order temporal accuracy is also
desirable to achieve an efficient scheme suitable for an iter-
ative time-stepping method. Since different discretizations may
be optimal for different types of problems, the following fam-
ily of two- or three-level schemes is utilized in the present
work:

1+ Uyt — (1 +2y9)(VUy + y(VU)"!
= Af[(1 — B)R" + BR"*Y] 4

Here, the superscripts relate to the time levels involved. The
parameter vy controls the levels to be employed and 8 defines
the extent of the implicitness. For example, the combination
v = 0.5, B = 1.0 specifies the three-level fully implicit scheme
(3-LFI). The drawback of this formulation is the relatively
large computer memory requirement, since the solution at
three time levels and R at two time levels must be storable.

Treatment of Grid Deformations

To avoid any unnecessary errors introduced by the grid
deformations, the exact fulfillment of the conservation of ge-
ometry is enforced regardless of the discretization applied. A
suitable mathematical formulation for the geometrical con-
servation law is obtained from Eq. (4) by requiring exact mass
conservation in a freestream. By taking into account the spec-
ified constant density and flow velocity an equation connect-
ing the cell volume changes and the cell face velocities is
obtained. From this basic formulation, a useful condition ap-
plicable to each cell face separately can be deduced by under-
standing the volume changes to mean the volumes AV swept
by the face within the time steps involved. With this reasoning,
the geometrical conservation law in its final form is written
as

(1 + AV — YAV = Af(1 — B)visS" + BvitisSn+]
®)

A different notation V" for the swept volumes is used here to
distinguish them from V.

In addition to the cell face normal velocity, the cell face
tangential velocity component is needed for the calculation
of viscous fluxes at the solid walls. The necessary extra con-
dition follows from the direction in which the cell face is
moving. Applying this idea, a unique grid velocity vector
fulfilling the geometrical conservation law can be computed.

In the practical implementation of the code, Cartesian ve-
locity components are used. The geometrical quantities in-
volved in the definition of the velocities for a cell face at the
time fevel n + 1 are illustrated in Fig. 1. After the generation
of the grid node points for the new time level, the only un-
knowns are the cell face velocities 47 *' and v;*'. From the
geometrical conservation law and the specification of the face

(z1,50)" 1!
n+1
Ve
n+1
(z1, )" Oy
v
n:+l ,un+1
]
Ayl g+t
n
AV (z2,y2)"*!
Sﬂ

(5% (z2,92)"

Fig. 1 Grid properties involved in the calculation of cell face velocity
components.

movement direction, the following pair of equations is ob-
tained:

n+lgnt+l n+lyn+1
u;t'ny + vytng

_ 1 s pAve - v
BSn+l At

- - ﬁ)v:S"]
(6a)
uyt! x4 oxrrl — xn — x%

= 6b
velt oyt A yEtt =yt =y (©0)

The final values for the new cell face velocities are solved
from these equations. For explicit calculations, Egs. (6) are
replaced by simpler conditions for the grid velocities at time
level n.

Computation of Fluxes

For the calculation of the inviscid fluxes, Roe’s method is
used. The fluxes are computed in a locally one-dimensional
manner applying rotation matrices and the scheme is adapted
to moving grids by including the grid speeds in the convective
velocities.®* To exclude nonphysical expansion shocks allowed
by the basic method, the entropy fix of Yee®* ensuring nonzero
values for the relative acoustic wave speeds is implemented.
In the evaluation of the required variables at cell faces in the
structured grid used, MUSCL-type differencing with an op-
tional flux limiter is applied. The discretization is thus formaily
second-order accurate in smooth regions of the flowfield.

For the viscous and heat fluxes, the thin-layer approxi-
mation with conventional central differences is utilized. The
effects of turbulence are taken into account by algebraic tur-
bulence models that can be activated in predetermined flow
regions to simulate partially laminar flow. At present, the
Baldwin—Lomax model and the Cebeci—Smith model adapted
to Navier—Stokes calculations by Stock and Haase® are avail-
able.

To be able to study complex flow regions, multiblock grids
are used. The blocks must be nonoverlapping with continuous
cell distributions across the interfaces to facilitate a complete
continuity and conservation of the solution. However, the
blocks to be joined can be of different size to ease the grid
generation and to enhance the solution efficiency. For the
calculation of the fluxes at common boundaries of the blocks,
states in the two cell rows adjacent to the interface are trans-
ferred by utilizing two layers of ghost cells outside each block
overlapping the neighboring block.

For external flow calculations, freestream conditions are
specified at the grid outer boundary. At solid viscous walls
the flow velocities are set equal to the grid velocity and a flow
tangency condition is applied at inviscid walls and symmetry
planes. The implementation of the solid wall conditions relies
on a second-order extrapolation of pressure and viscosity.
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Time-Stepping Method

With the implicit temporal discretizations, an iterative so-
lution facilitates the elimination of factorization errors and
eases the treatment of boundary conditions. However, the
most important factor necessitating the iterations is the mul-
tiblock structure of the grid, since the correct, conservative
implicit data transfer between the blocks in a noniterative
system is practically impossible to achieve.

The iteration scheme utilized is derived from Eq. (4) by
linearizing it at an intermediate state k. When the new so-
lution is written as (VU)"*! = V" 1Uk + V"*+18U and R"+!
is linearized, too, an equation for the corrections 8U is ob-
tained. When everything except the terms containing U are
written on the right-hand side (RHS) and a division by V»*!
is conducted, the equation applicable to each cell takes the
form:

k
At (R 1
[”7—3‘,"“(5,)}3(]—%

X {~A + NV U* + (1 + 2y)(VU)Y" — y(VUY !
+ A1 — B)R" + BR) Q)

From this equation U”*! can be iterated by computing suc-
cessive corrections for U* applying a matrix solver required
by the left-hand side (LHS) until the process is sufficiently
converged. However, because of the approximations made in
the adopted solver that will be described shortly, Eq. (7) must
be modified to ensure stability of the iteration at arbitrary
physical time steps. This can be accomplished without af-
fecting the solution accuracy, because at the converged sit-
uation 8U is zero. The stabilization is conducted by replacing
v on the diagonal of the LHS with a variable weight A#/Ar,
where At is a stability-limited local pseudo-time-step related
to the solver employed.

After the stabilizing modification and a subsequent multi-
plication by A7/(A¢ + A7), Eq. (7) can be converted to

k
A’rmod %_ _ A’Tmod &
l:l 'B yn+l (aU) :l oU = Y+l Rmod (8)

where A7, = AfA7/(At + A7) and the modified residual
RX .4 1s the braced expression of the RHS of Eq. (7) divided
by At.

This final equation is of exactly the same form as that used
in typical implicit steady-state flow solvers employing pseu-
dotime integration. In this work, the LU-factorization scheme
of Ref. 62, following the ideas of Obayashi and Kuwahara,%®
is used to obtain the corrections 8U. The scheme is based on
the approximate factorization and on the splitting of the Ja-
cobians (dR/0U)*. The tridiagonal equations resulting from
the factorization are further factored into bidiagonal sweeps
that can be vectorized for efficient computations. The starting
values of the bidiagonal sweeps at the boundaries of the com-
putational domain are set to zero for simplicity. In addition
to the factorizations, a further approximation is that the split
Jacobians used in the bidiagonal sweeps are not the true Ja-
cobians of the fluxes used on the RHS, but simpler expressions
based on the splitting of Steger and Warming.®” These factors
necessitate the limitation of the local pseudo-time steps A7 as
discussed previously. The values to be used are based on a
user-defined Courant number and a diffusion stability crite-
rion. By selecting an appropriate Courant number the stability
and efficiency of the iteration can be controlled.

To speed up the convergence within physical time steps, a
multigrid algorithm based on the work of Jameson and Yoon®
can be utilized. The actual implementation is described in
detail in Refs. 69-71. In our steady-state applications, this
system enhances the convergence rate significantly, the at-
tainable speed-up factors being 5-10.

During the solution process, the blocks are handled se-
quentially and independently of each other within each pseudo-
time-step (iteration cycle), keeping all of the boundary con-
ditions fixed. For each block, the spatial discretizations and
the number of multigrid levels to be used are defined inde-
pendently. After all of the blocks have been computed, the
block boundaries are updated by setting the new solution at
the interfaces into the ghost cells of the neighboring blocks
to form new boundary conditions for the next cycle. Although
the grid block boundaries lag the solution elsewhere, the final
result is completely continuous when the calculation is suf-
ficiently converged. As a result, the grid block interfaces and
boundary conditions cause no deterioration in the basic spatial
or temporal accuracy.

Three different iteration termination criteria have been used.
The first alternative compares the computed maximum change
in density to a user-defined limit. The second system computes
the density correction L, norm at each iteration and divides
it by the value obtained at the first iteration in the time step
involved. This ratio is the monitored quantity. Because the
test runs have shown that it is very difficult to specify suitable
values for these criteria ensuring sufficient convergence with-
out unnecessary calculations, a predetermined number of it-
erations within time steps is specified in the following tests.

Test Calculations

Initial Studies

To validate the basic operation of the developed code, rel-
atively simple, well-defined test cases were computed. Firstly,
the inviscid, supersonic, transient shock-channel case defined
in Ref. 1 was studied using a two-block grid having a total of
8191 cells. Two noteworthy features were observed in this
case. The entropy fix of the Roe’s scheme turned out to be
necessary and a simple explicit Euler time integration was
computationally about as efficient as implicit second-order
methods. As the second test case, laminar flow around a rigid
NACA 0012 airfoilat Re = 1 X 10, M = 0.85, anda = 0
was simulated in a 192 x 64 c-grid applying just the implicit
schemes. In this GAMM workshop test case,’? the shocks on
the airfoil remained stationary, but periodic oscillations de-
veloped in the wake. The behavior obtained is in agreement
with the available reference results.” The initial calculations
are documented in detail in Refs. 48 and 63.

Transonic Buffet on a Biconvex Airfoil

A test case with turbulent flow at a high Reynolds number
is necessary to validate the computation method under study
for practical applications. A suitable situation is the transonic
buffet on an 18% thick biconvex airfoil studied experimentally
at Re = 11 x 10°in Ref. 73. In this case, a strong oscillatory
interaction takes place between the boundary layer and shock
waves in a certain Mach number range. The experiments and
some reference calculations*” include the effects of the wind-
tunnel walls, but calculations have also been made simulating
the airfoil in a freestream® with comparable results. In this
work, it was decided to follow the latter setup because of the
simplicity of the grid generation.

The C-type grid employed has 192 X 64 cells. At the leading
edge, the thickness of the first cell layeris 5 X 107¢, increasing
to 20 x 10~° at the trailing edge, ¢ being of unit length. As
the spatial discretization, a third-order upwind-biased scheme
without the flux limiter was applied. The transition was fixed
at the 5% chord point owing to the lack of any specific data.

Initially, steady flows at subcritical Mach numbers were
simulated to check that the solver does not give erratically
time-dependent solutions. When the Mach number was in-
creased from 0.754 to 0.783, a periodically oscillating flow
with a roughly constant amplitude was obtained, as in Ref.
5. The computed lift and drag coefficients vs time are shown
in Fig. 2, and the flowfield is illustrated in Fig. 3. Two different
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Fig. 2 Computed lift and drag coefficient histories during the fully
developed oscillations at M = 0.783.
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Fig. 3 Mach number distributions around the 18% thick biconvex
airfoil at M = 0.783 at a lift minimum.

modes of oscillation can be distinguished. The long-period
regular oscillation is related to the movement of the shocks,
and the high-frequency, small-amplitude irregular oscillation
is caused by the wake vortices. The reduced frequency of the
shock oscillation is k = wc/(2U..) = 0.43, which is somewhat
lower than the value of 0.49 measured in the tunnel. Never-
theless, the present result is closer to the experimental value
than the computed values of 0.40—0.41 given in Refs. 4, 5,
and 74. It is interesting to note that none of the references
include the wake vortex oscillation mode. However, it can be
expected that the present calculations on a relatively dense
grid model finer details than the coarse-grid, temporally first-
order calculations of the references.

In this context, the efficiency of the solver was studied, and
an efficient operating mode was sought by computing a certain
period of time with more than 50 different combinations of
computational parameters. In the tests, the parameters were
the time discretization, the length of time steps, the number
of iterations within time steps, the number of multigrid levels,
and the iteration Courant numbers. The results obtained were
evaluated against an accurate reference solution computed
with the following attributes: 3-LFI, At = 0.005 (nondimen-
sionalized by the freestream sonic speed and the airfoil chord),
20 iterations per time step, 2 multigrid levels, Courant—
Friedrichs—Lewy (CFL) = 4 on the fine and CFL = 6 on the
coarse grid level.

Only implicit time discretizations were tested since in this
type of flow the explicit schemes are impractical. The three-
level fully implicit scheme produced accurate results without
computational problems and is not critical about the time-
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step lengths as long as they are reasonable. The Crank—Nic-
olson calculations turned out to be unstable, as could be ex-
pected on the basis of Refs. 3 and 36. The scheme is apparently
inapplicable to strongly nonlinear problems. The implicit Eu-
ler scheme (IE) performed smoothly, but the results were
inaccurate unless very short time steps were applied. The
method is undoubtedly more inefficient than the 3-LFI scheme.
The computed lift histories shown in Fig. 4 were obtained
with a constant time step and the computational effort within
iterations was the same in each run.

The effects of the time-step lengths and the number of
iterations within time steps studied with the 3-LFI scheme
turned out to be strongly interrelated. At a certain total effort,
equivalent results could be obtained with short time steps and
few iterations, or with long time steps and a large number of
iterations. This observation sets pressures to enhance the con-
vergence of the iterations. The iteration is necessary in any
case, as was proved in additional test runs with very short
time steps and no iterations giving poor results.

It was hoped that the multigrid system would speed up the
convergence to such an extent that the iterative solution would
become highly efficient. However, in the multigrid efficiency
tests, the employment of additional grid levels after the third
level had no effect on convergence, and the difference be-
tween two and three levels was minimal. This behavior differs
markedly from the steady-state calculation mode where five
grid levels normally lead to a very rapid convergence.® 7! In
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Fig. 4 Behavior of lift of the biconvex airfoil at M = 0.783 during
the test period computed with different time discretizations.
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Fig. 5 Behavior of the lift of the biconvex airfoil at M = 0.783 during

the test period computed with constant time steps and variable num-
bers of iterations and multigrid levels.



HOFFREN, SHHKONEN, AND LAINE 1347

the time-accurate mode no more than two grid levels should
be used because the additional levels just consume extra com-
puting effort to no effect. Figure 5 presents results computed
with one and two grid levels in such a way that the CPU time
consumption of the two-level calculation is about 15% lower,
although the result is better. It is seen that the multigrid
algorithm with two grid levels improves efficiency, although
the benefit is modest. The reason for the relatively poor im-
provement in convergence when applying the multigrid scheme
is apparently the fact that in time-accurate calculations no
disturbance waves are to be spread rapidly through the com-
puting domain within time steps.

Finally, the effect of the Courant numbers in the iterations
(pseudo-time-steps) was studied. A 10-fold increase of the
Courant numbers from the basic values produced an equiv-
alent result at half the computational effort, which means that
the effect is substantial.

A code-operating mode devised according to the guidelines
obtained from the tests gives practically as good results as the
reference system, but consumes only 25% of the reference
CPU time. However, even the enhanced simulation is still a
heavy process, requiring about 12,500 CPU seconds per one
long cycle on an IBM 3090VF-200J.

Pitching Supercritical Airfoil

To validate the code for moving grids, oscillating airfoils
were studied. The first case was the NACA 0012 at M =
0.755 pitching around its quarter-chord point, as defined by
a standard AGARD test case.” The angle of attack varied
as @ = (0.016 + 2.51) deg sin(wt) with k = 0.0814. The
calculations proceeded smoothly and the results*-%* agree well
with the numerous reference calculations,'#2!33-35:40.46.50.51,53.76,77
confirming the correct basic operation of the grid movement
algorithm. However, the case is apparently relatively easy to
handle, requiring just about 100 time steps including five it-
erations to compute one oscillation cycle accurately.

To test the capabilities of the code in a more challenging
situation, the supercritical NLR 7301 airfoil was studied near
its shock-free design point corresponding to the AGARD test
case CT 8.7 In this case, the airfoil pitches sinusoidally around
the 40% chord point at the reduced frequency of 0.2 with the
amplitude of 0.5 deg. The experiments conducted at NASA
Ames,” where the nominal conditions are M = 0.751, Re =
11.4 x 10°, @ = 0.37 deg, and & = 0.201, were simulated
in this study.

Initially, the calculations were performed employing a rig-
idly moving 192 x 64 C-grid similar to the one used with the
biconvex airfoil. The grid points were moved analytically, but
the grid speeds were evaluated using the general numerical
method for deforming grids. The third-order upwind-biased
spatial discretization and the three-level fully implicit time
integration with five iterations and two multigrid levels were
applied in all of the unsteady runs, and the effects of turbu-
lence were simulated using the Baldwin—Lomax model. A
problematic issue is the transition that had not been fixed in
the experiments. However, since the transition must be spec-
ified for the solver, the calculations were initiated with the
transition fixed at the 5% chord.

The agreement between the computed and measured steady
pressure distributions in the nominal conditions turned out to
be rather poor. The computed shock position was clearly too
far aft, and the pressure levels in front of the shock disagreed,
too. Nevertheless, the airfoil pitching motion was simulated
to see whether the unsteady results would be any better. Not
surprisingly, the results computed using the time step of about
1/200 of the oscillation cycle were bad. Calculations were
repeated using shorter time steps to assess the temporal ac-
curacy, and the criticality of the transition was studied by
moving it to the 20% chord. The results of these computations
are shown in Fig. 6 depicting the distributions of the real and
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Fig. 6 Distributions of the reduced a) real and b) imaginary parts of
C, on the airfoil upper surface at nominal conditions M = 0.751 and
& = 0.37 deg computed with different transition points (#r) and Az.
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imaginary part of C, on the upper surface divided by the
oscillation amplitude in radians.

From Fig. 6a it is seen that moving the transition rearwards
induces a downward spike in the real part of C, at the shock,
but the effect of the time step is minimal. In the imaginary
part of Fig. 6b, the transition movement brings about an
upward spike at the shock. The longest, initially applied time
step of 0.1 is apparently too long, causing spurious oscilla-
tions. Although the location of the transition and the length
of the time step have some effect on the results, it is evident
that the solution is mainly governed by other factors.
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The calculations were continued by attempts to match the
computed steady pressure distribution to the measured one
by perturbing the Mach number and the angle of attack while
maintaining the transition at the 20% chord. When the com-
bination M = 0.735 and @ = —0.15 deg was specified, a
reasonable agreement was obtained. The result is shown in
Fig. 7, which also contains the distribution computed at the
nominal conditions and the experimental data.” The need for
adaptation is probably largely caused by the unknown wind-
tunnel interferences, which demonstrates the sensitivity and
difficulties in transonic experiments. The irregularities in the
measured points are related to the imperfections in the man-
ufacture of the model,” leading to inevitable deviations from
the results computed with the smooth design contour.

The subsequent unsteady calculations at the adapted con-
ditions applying the time step 0.05 led to a significant im-
provement in the real and imaginary parts of C, as illustrated
in Fig. 8. The agreement of the real part with the measure-
ments is quite good except for the downward spike just after
the shock, whereas the result computed at the nominal con-
ditions is far from the experimental data. The differences in
the solutions are even larger in the imaginary part where
marked differences between the adapted calculation and the
experiments still exist before the shock. There are probably
two main reasons for this discrepancy. Firstly, the thickness
of the experimental model is slightly greater than the design
value,” which may lead to an increased sensitivity to flow
unsteadiness. The second factor is the transition that is fixed
in the calculations but free in the experiments. In addition,
the primitive turbulence model may have a contribution.

The calculations at the adapted conditions were repeated
using a double-density grid to check the effect of spatial res-
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Fig. 8 Distributions of the reduced a) real and b) imaginary parts of
C, on the airfoil upper surface computed at the adapted (M = 0.735,
a = —0.15 deg) and nominal conditions (M = 0.751, & = 0.37
deg) compared with the experimental data (nominal conditions).
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olution. The 384 x 128 grid was generated by dividing each
cell of the coarse grid into four smaller cells. The steady
pressure distribution obtained using the dense grid agrees with
the coarse grid solution with negligible differences. Only the
shock is slightly sharper. Also, the unsteady results compared
in Fig. 9 are very similar and the reduction of the time step
does not change the situation appreciably.

The test calculations were conducted on the same IBM
machine as used in the buffet calculations. The computation
of one full oscillation cycle with the 192 x 64 grid and Ar =
0.05 giving sufficient spatial and temporal accuracy took about
3300 CPU seconds, a few percent of which was consumed by
the grid movement algorithm. To obtain a stabilized periodic
solution, three cycles were generally necessary after a start
from a steady condition. The unsteady results presented are
taken from the final cycle of each calculation.

Based on the calculations, several conclusions can be drawn.
The sensitivity of transonic flow around supercritical airfoil
designs is once more demonstrated. Clearly, the average steady
pressure distribution must be predicted accurately in order to
obtain a correct unsteady behavior, as suggested in Ref. 75.
The wind-tunnel interference effects that are hard to evaluate
at transonic speeds are important, which makes the validation
of a computation method very difficult. In this particular case,
the modeling of the free transition is at present beyond the
capabilities of typical Navier—Stokes codes, which further adds
to the uncertainties of the comparisons. However, the tests
revealed that the discrepancies between the computed and
measured results are not of numerical, but of physical origin,
which confirms the proper function of the time-accurate solver
under study. The code limitations are related to the basic
physical modeling and not the time integration.
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Conclusions

A new thin-layer Navier—Stokes solver for time-dependent
compressible flows has been developed. The implicit, second-
order accurate formulation facilitates the simulation of flows
at high Reynolds numbers. Complex, arbitrarily deforming
geometries can be handled using multiblock structured grids,
and the grid deformation algorithm conserves the freestream
exactly. An iterative time-stepping maintains the temporal
and spatial accuracy of the basic scheme also at grid block
interfaces and solid boundaries.

Several different types of flow cases have been run to val-
idate the code, including turbulent flows around stationary
and oscillating airfoils. In addition, a parametric study for the
computational variables has been conducted to find an effi-
cient code operating mode. All of the essential functions of
the solver are found to work properly within the limitations
of the basic formulation, mainly the simple transition and
turbulence modeling. Of the time discretizations tested, the
three-level fully implicit scheme is clearly the best choice,
improving the accuracy over the implicit Euler scheme at
negligible cost. Iterations within time steps are necessary to
obtain accurate results, but the division of the computational
effort between the time steps and iterations is not critical.
This suggests that the efficiency of the current iteration method
is not optimal. The use of a multigrid method with two grid
levels speeds up the convergence within time steps, but the
observed benefit is modest.

In its current status, the developed time-accurate flow
solver can be applied to a wide variety of flow problems as
designed, but the system demands substantial computer re-
sources both in terms of execution time and memory. The
CPU time consumption can probably be reduced to a certain
extent by improving the efficiency of iteration within time
steps and by finding suitable convergence criteria to prevent
unnecessary iterations. Evidently, more work and test cal-
culations are needed to find the best obtainable performance.
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